
www.manaraa.com

Checking Linked Data Structures�

Nancy M. Amatoy Michael C. Louiz

Coordinated Science Laboratory, University of Illinois, 1308 W. Main St., Urbana, IL 61801

Abstract

In the program checking paradigm, the original pro-
gram is run on the desired input, and its output is
checked by another program called a checker. Recently,
the notion of program checking has been extended from
its original formulation of checking functions to check-
ing a sequence of operations which query and alter
the state of an object external to the program, e.g.,
checking the interactions between a client and the man-
ager (server) of a data structure. In this expanded
paradigm, the checker acts as an intermediary between
the client, which generates the requests, and the server,
which processes them. The checker is allowed a small
amount of reliable memory and may provide a prob-
abilistic guarantee of correctness for the client. We
present o�-line and on-line checkers for data struc-
tures such as linked lists, trees, and graphs. Previously,
the only data structures for which such checkers existed
were random access memories, stacks, and queues.

1 Introduction

The traditional methods used to ensure the correct-
ness of programs are testing and veri�cation. Test-
ing certi�es that the output of the program is correct
for a particular set of test input values; however, no
guarantee can be o�ered about the correctness of the
output of the program for input values di�erent from
those of the test set. Formal veri�cation determines
whether a program produces the correct output for all
input/output pairs, but is usually infeasible to imple-
ment for all but the simplest of programs. Both test-
ing and formal veri�cation are performed before the
program is distributed for use; thus, neither of these
methods is fault tolerant. The practical infeasibility
of formal veri�cation, the incomplete guarantees pro-
vided by testing, and the fact that neither of these
methods is fault tolerant have led researchers to pro-

�This paper appeared in the Proceedings of the 24th Annual

International Symposium on Fault-Tolerant Computing, 1994,
pp. 164{173. This work supported in part by NSF Grant CCR-
93-15696.

ySupported in part by an AT&T Bell Laboratories Graduate
Fellowship. Email: amato@cs.uiuc.edu.

zEmail: m-loui@uiuc.edu.

pose alternative methods for verifying the output of
computations.

Algorithm-based fault tolerance is a method that
checks an operation by tailoring the fault-tolerance
scheme to the algorithm used to perform the opera-
tion. Introduced by Huang and Abraham [10], this
method has since been studied extensively (see, e.g.,
[2, 3, 4]). Generally, in an application of this tech-
nique, the input data are encoded, and the algorithm
is designed to operate on encoded input data and pro-
duce encoded output data; for example, many matrix
operations can be checked by adding a checksum row
and a checksum column to the input and output ma-
trices [10]. Another interesting method for achieving
fault tolerance is the certi�cation-trail technique pro-
posed by Sullivan and Masson [17, 18]. Briey, the
certi�cation-trail technique consists of two phases. In
the �rst phase, a modi�ed version of the original pro-
gram is run, producing both the expected output and
a trail of data called a certi�cation trail. In the second
phase, another program uses the certi�cation trail cre-
ated by the �rst phase to determine whether an error
has occurred.

A technique called program checking, which bears
conceptual similarities to both algorithm-based fault
tolerance and the certi�cation-trail technique, has
evolved in an environment largely isolated from the
traditional fault tolerance community. In the program
checking paradigm proposed by Blum and Kannan [6],
the original program is run on the desired input, and its
output is checked by another program called a checker.
In contrast to algorithm-based fault tolerance and the
certi�cation-trail technique, the checker treats the orig-
inal program as a black box controlled by an adver-
sary. Also, the checker is allowed to make calls to the
original program (with any input of its choice) and
may provide a probabilistic evaluation of the correct-
ness of the output of the original program|as long
as the checker's probability of an incorrect evaluation
can be made arbitrarily small, i.e., as small as desired.
This basic model of program result checking was ex-
tended by Blum, Luby, and Rubinfeld [7] to include
the idea of using several di�erent programs (a library)
to check another program, and the concept of a self-
testing/correcting pair of programs that enable one to

1



www.manaraa.com

use a program that is not too faulty on average to com-
pute a correct output. Program checkers can be used
to achieve hardware and/or software fault-tolerance.
For example, they can be used as acceptance tests
in the recovery-block approach [15], or as alternatives
to N -version programming [1], algorithm-based fault-
tolerance, or the certi�cation-trail technique.

Recently, Blum et al. [5] expanded the concept of
program checking to include an important class of non-
functional problems: checking the interactions between
a user (client) and the manager (server) of some re-
source. In this paradigm, the checker acts as an in-
termediary between the client, which generates the re-
quests, and the server, which processes them. Many
software systems follow the client-server paradigm,
e.g., database systems and operating systems. Often,
the reliability of such non-functional programs is ex-
tremely important because they are used to perform
safety-critical tasks such as monitoring intensive care
patients in hospitals. Note that an important require-
ment of checkers for these programs is that they be
on-line since the programs they check operate contin-
uously or in real-time environments. In addition to
the uses mentioned above for program result checking,
checkers of this type could be used for purposes such as
developing robust data structures [12, 19]. In this ex-
panded version of program checking, the checker might
use some limited amount of reliable memory|achieved
through hardware fault-tolerance techniques such as
hardware or information redundancy [11]. Then, if the
resource resides in some larger unreliable memory, the
checker can use its own smaller reliable memory to de-
tect faults in the unreliable memory, i.e., faults in the
larger memory can be detected without incurring the
cost of making it fault-tolerant.

In this paper, using the checking model proposed
by Blum et al. [5], we provide checkers, both o�-line
and on-line, for linked data structures such as lists,
trees, and graphs. Previously, such checkers were only
known for random access memories, stacks, and queues
[5]. Our checkers resemble those previous checkers,
but are necessarily more complex because we are in-
terested in verifying the dynamic relationships (e.g.,
links) among the elements in the data structure, in
addition to checking the data values stored in each el-
ement. For example, since an element can be inserted
or deleted anywhere, checking a linked list is more dif-
�cult than checking a stack (queue), in which only the
top (�rst or last) element can be accessed. We defer
further discussion of our results until we have formally
de�ned the program checking model. After we describe
our checkers, we observe in Section 6 that the o�-line
data structure checkers presented in this paper and

Checker ResourceUser

Work Space

(Manager)

Figure 1: The checker is the intermediary between the
user and the manager of the resource.

in [5] bear striking similarities to the certi�cation-trail
methods of Sullivan and Masson [17, 18]. Due to space
constraints, some details have been omitted from this
paper; they will be included in the full version.

2 The Program Checking Model

In this paper we adopt the program checking model
proposed by Blum et al. [5] for checking the interac-
tions between a user (client) and the manager (server)
of a resource. We review this model here. There are
three participants in the checking process: the user U ,
the (manager of the) resource R, and the checker C.
For convenience, we sometimes use the term resource
R, when in actuality we refer to the manager of the re-
source. The checker C acts as an intermediary between
the user U , and the manager of the resource R as fol-
lows (see Figure 1). The user U presents operations to
be performed on R to C, and C passes these requests
along to R. The manager of R performs the opera-
tions requested by C and sends the resulting output,
if any, to C, which in turn passes the relevant output,
if any, on to U . The checker is required to pass the
output of each operation (nil if the operation produces
no output) or \BUGGY" back to U before accepting
another operation request from U .

The checker C is allowed a small amount of reliable
memory, and treats the resource R as if it resides in a
large, unreliable memory that is controlled by an ad-
versary. The checker's goal is to detect an error in
the behavior of R when performing the operations re-
quested by U . The resources available to C are a large,
unreliable memory (which also contains R) and a pri-
vate, reliable memory. For all implementations of R,
and for all request sequences, the checker C is required
to function as follows: if R's output is correct for all
operations in the sequence, then C's output is correct
for all operations with probability at least p, and ifR's
output is incorrect for any operation, then C outputs
\BUGGY" at least once with probability at least p, for
some 3=4 < p � 1. Our checkers will have p = 1�1=2k,
for any desired integer k > 1. Note that if the checker

2



www.manaraa.com

has a reliable memory of size O(m), then it can trivially
check resources R of size m by keeping its own copy of
R, performing each requested operation on its private
copy, and comparing this output with the output pro-
duced by R. Therefore, we are interested in checkers
that have \small" reliable workspaces, e.g., O(logm).

A checker may be either o�-line or on-line. An
on-line checker outputs \BUGGY" immediately after
an errant operation, and an o�-line checker speci�es
\BUGGY" at some time after the errant operation.
For example, an o�-line checker may wait until after
processing a sequence of requests before determining
whether or not an error has occurred.

In their paper introducing this new checking model,
Blum et al. study the fundamental problem of check-
ing a sequence of stores to and retrieves from mem-
ory. Their results include o�-line and on-line check-
ers for random access memories (RAMs), stacks, and
queues. All the o�-line checkers use O(log d + k) bits
of reliable workspace to check a data structure with
d elements. Their on-line checkers process sequences
of n operations in O(n log d) time and use O(k logd)
space (except for the on-line RAM checker, which uses
O(logd+k) space). All the checkers detect errors with
probability at least 1 � 1=2k, for any desired integer
k > 1. The on-line RAM checker is the only checker
that uses any cryptographic assumptions (e.g., a se-
cret workspace). Blum et al. also establish that ev-
ery checker needs a reliable memory of 
(logd) bits to
check sequences which store d bits of data.

In this paper we present space-optimal o�-line
checkers for linked lists, trees, and graphs that use
O(logd+k) bits of reliable memory, where d is the max-
imum number of elements in the data structure. The
e�ciency of our on-line checkers di�ers for each of the
data structures studied. The on-line linked list checker
handles a sequence of n user operations in O(n logd)
time using a reliable memory of O(k log d) bits. The
on-line tree checker incurs a larger amortized cost of

O(d1=
p
log d=

p
logd) for each user operation and uses

O(k
p
d) bits of reliable memory. The on-line RAM

checkers of Blum et al. are used to check graphs on-
line (this is the only case in which we use cryptographic
assumptions). All our checkers detect errors with prob-
ability at least 1� 1=2k, for any desired integer k > 1.

Let b denote the maximumnumber of bits needed to
represent any single value stored in the data structure.
For simplicity, we assume that b = O(log d), where
d is the maximum number of elements ever present
in the data structure. If this is not the case, then an
additional term of O(b) bits must be added to the sizes
reported for the checker's reliable memory.

3 Data Structures

To enable the checker to monitor a data structure
D, we require that D be accessed only by its manager.

Linked Lists. We model each element of the list as a
record with three �elds: data, and the unique identi-
�ers of the element (id) and its successor (sid), if any.
The identi�er �elds can be altered only by the checker.
Linked lists are traversed using head() and next(e)
operations, which return a copy of the requested el-
ement. Write(e) copies the record e to the element
with identi�er e:id. Insert(pred; e) inserts an element
in the list after pred, and copies the record e to the
new element. Delete(pred; e) deletes e, the successor of
pred, from the list. If pred is nil, then insert(pred; e)
(delete(pred; e)) inserts (deletes) the element at the
head of the list.

Trees. It is assumed that trees are rooted. Each node
v of the tree is a record with the �ve �elds: data,
and the unique identi�ers of the node (id), its par-
ent (pid), its right sibling (rsid), and its leftmost child
(lcid), if they exist. If the tree is binary, or if there
is some small number of children (e.g., search trees
such as tries or 2-3-4 trees), then each node can store
the identi�ers of all its children. As with linked lists,
only the checker can alter the identi�er �elds. Trees
are traversed using root(), parent(v), rightsib(v), and
leftchild(v) operations, each of which returns a copy of
the requested element. Write(v) copies the record v to
the node with identi�er v:id. Delete(par; lsib; v) deletes
the node v from the tree; the children of v become chil-
dren of par, the parent of v. Move(par; lsib; v; npar)
changes v's parent to npar from par. Splice(par; lsib; v)
adds the subtree rooted at v to the tree so that par
and lsib are v's parent and left sibling, respectively.
Split(par; lsib; v) deletes the subtree rooted at v from
the tree. If the par parameter is nil in any operation,
then the node v refers to root. If any of the other
parameters are nil, then it is assumed that the corre-
sponding node does not exist, e.g., if lsib is nil then v

is assumed to be the leftmost child of its parent.

Graphs. Let G = (V;E) be a directed graph with
vertex set V and edge set E, where jV j = g. With-
out loss of generality, we assume that the vertices in
V are indexed from 1 to g. We consider two alterna-
tive representations of graphs: adjacency matrices and
adjacency lists. The following operations are avail-
able on a graph: add vertex(vi), delete vertex(vi),
add edge(vi; vj), delete edge(vi; vj), neighbors(vi) (re-
turns the set of vertices incident to vi), read(vi), and
write(vi).

3



www.manaraa.com

4 O�-Line Checkers

The o�-line checkers given here resemble the o�-line
checkers for RAMs, stacks, and queues of Blum et al.
[5]. In its reliable and private (but not necessarily se-
cret) memory, the checker holds:

1. The description of an �-biased hash function h.

An �-biased hash function h [13] can be described
using O(log d+k) random bits and can distinguish
between two d-bit binary strings A and B as fol-
lows: if A 6= B, then h(A) = h(B) with probabil-
ity at most 1=2k. The values h(A) and h(B) each
require O(k) bits of storage. An important prop-
erty of �-biased hash functions is that the hashed
values can be updated incrementally, e.g., if A rep-
resents a set, then h(A) can be updated as new
elements are added to A; moreover, each such up-
date can be performed in O(k) time. (�-biased
hash functions were also used by Blum et al. )

2. The hashed values of logs recording all the opera-
tions performed on the data structure.

The log of operations is partitioned into the in-
sert and delete logs, I and D, respectively. Each
time the data structure is modi�ed, a log entry
recording the incremental change is made.

(a) An entry representing the state of the data
structure before the change is added to D.

(b) An entry representing the new state of the
data structure is added to I.

3. Other information that facilitates veri�cation of
the data structure.

In order to make the above description more con-
crete, we give a simple example illustrating the o�-line
queue checker of Blum et al. [5]. The checker main-

tains two counters, ne and nd, that record the num-
ber of items that have (ever) been enqueued or de-
queued, respectively. After receiving an enqueue re-
quest eq(a) from U , the checker increments ne, adds
the tuple (a; ne) to the insert log I, passes eq(a) to R,
and sends nil back to U . Similarly, after receiving a
dequeue request dq() from U , the checker passes dq()
to R, receives b (the result of the operation) from R,
increments nd, adds (b; nd) to the delete log D, and
sends b back to U . An example is shown in Figure 2.
Note that if the queue is empty (i.e., if ne = nd), then
the contents of the insert and delete logs are identical
(as long as R has functioned properly). Thus, in or-
der to determine whether an error has occurred, the
checker can simply dequeue all remaining items in the
queue and check whether I = D (actually, since the

Op Queue ne nd I: insert Log D: delete Log

empty 0 0 ; ;

eq(a) a 1 0 f(a;1)g ;

dq() empty 1 1 f(a;1)g f(a;1)g
eq(b) b 2 1 f(a;1)(b;2)g f(a;1)g
eq(c) cb 3 1 f(a;1)(b;2)(c;3)g f(a;1)g
dq() c 3 2 f(a;1)(b;2)(c;3)g f(a;1)(b;2)g
dq() empty 3 3 f(a;1)(b;2)(c;3)gf(a;1)(b;2)(c;3)g

Figure 2: An o�-line queue checker.

checker stores only the hashed values h(I) and h(D),
it checks whether h(I) = h(D)).

The above example illustrates a general strategy
used by the checkers of Blum et al. [5], which is also
adopted by our checkers. In particular, the checker
makes entries to the I and D logs so that I = D if
and only if R performs all of the operations correctly.
More precisely, over the lifetime of the data structure, I
andD contain identical entries (but not necessarily the
same sequence of entries) if and only if all operations
performed on the data structure are correct. Thus, I
and D are actually sets. However, it is useful to pre-
serve the conceptual view of them as logs, which pro-
vides an ordering among their elements. Generally, the
above requirement of balancing the logs will be ful�lled
by \destroying" the data structure after all requested
operations have been performed, e.g., by deleting all
elements left in the linked list.

4.1 An O�-Line Checker for Linked Lists

To check that a linked list is functioning correctly,
we need to verify that (i) the elements of the list con-
tain the most recent values placed in them, and (ii) the
links of the list reect the current relationships between
the elements. To verify condition (i), we augment each
element of the linked list with a time-stamp �eld ts,
which is updated upon each access of the element. The
element identi�ers are used to verify condition (ii).

Entries in the insert and delete logs record
information about links and are of the form:
(e:id; e:sid; e:data; ts), where e is the origin of the link
and ts is a time-stamp. We represent the logs by bi-
nary strings, and we adopt the method suggested by
Blum et al. [5] for encoding log entries in these strings:
an entry of the form (e:id; e:sid; e:data; ts) corresponds
to a 1 bit in the (e:data+e:id�v+e:sid�v2+ ts�v3)th
bit of the string, where v is the largest possible value
stored in any element of the linked list. As mentioned
in Section 2, we assume v = O(d), where d is the maxi-
mum number of elements in the data structure|if not,
then a term of O(log v) must be added to the size re-
ported for the checker's memory. Thus, the lengths of
the strings representing I and D are polynomial in d.

4



www.manaraa.com

e x

procedure Check next(e)

tc := tc + 1;

x := next(e);
if (x:ts � tc) or (e:sid 6= x:id)

then BUGGY;

add (e; e:ts) to D;
e:ts := tc;

write(e);

add (e; tc) to I;
return (x);

end Check next

pred

e

procedure Check insert(pred; e)

tc := tc + 1; i := i+ 1;

e:id := i; e:sid := pred:sid; e:ts := tc;
add (pred; pred:ts) to D;

insert(pred; e);

pred:sid := e:id; pred:ts := tc;
write(pred);

add (pred; tc) to I;

add (e; tc) to I;
return ;

end Check insert

Figure 3: The links recorded in D (I) are marked with an � ().

In addition to the description of the �-biased hash
function h, and the hashed logs h(I) and h(D), the
checker also stores a copy of the head element, and two
counters i and tc in its reliable memory. The head is
used to check the head() operation. The counter i rep-
resents the number of elements that have (ever) been
inserted into the list; also i is the source of element
ids. The counter tc is used to generate time-stamps.
The actions taken by the checker on the operations
next and insert are shown in Figure 3; the other oper-
ations are handled similarly. For convenience, the tu-
ple (e:id; e:sid; e:data; ts) is represented by (e; ts). To
avoid boundary conditions, the elements involved are
assumed to be internal to the list; the modi�cations
required for the general case are straightforward. The
checker is said to make entries to I and D, when in
reality it updates h(I) and h(D); referring to the logs
gives a more intuitive idea of how the checker operates.

We assume that the linked list is originally empty
and that h(I), h(D), i, and tc are initialized to zero.
To check the functioning of the list after a sequence of
operations, the checker deletes all elements remaining
in the list and tests whether h(I) = h(D). Actually, it
is su�cient for the checker to perform a mock deletion
by reading each element in the list and making the ap-
propriate entries to D, but not the entries to I; the
entries to D are needed to balance the the correspond-
ing entries (supposedly) previously made to I. Let O
denote the sequence of all operations performed on the
list.

Lemma 4.1 If any op 2 O malfunctions, then I 6= D.

Proof: Assume some op 2 O malfunctions, let l be a
link involved in the error, and let e be the origin of the
link l. There are two ways that an error could occur:
(i) link l did not exist when op was performed, or (ii)
the values read from e were not the last values written
to e. However, these are both errant reads.

Select the �rst op 2 O which performs an errant
read. Let e be the �rst element encountered during op
that contains errant data, i.e., (e:id; e:sid; e:data; e:ts)

is the �rst entry made to D during op that con-
tains erroneous data. We now argue that the tu-
ple (e:id; e:sid; e:data; e:ts) will never appear in I. It
is easy to verify that the time-stamps of the entries
made to I will be correct, unique, and strictly in-
creasing since the checker is responsible for updat-
ing and storing these values. Thus, it must be that
(e:id; e:sid; e:data; e:ts) was not present in I when e

was read during op|otherwise, e did not contain er-
rant data, or op was not the �rst operation to perform
an errant read. It is also easy to see that the entry
(e:id; e:sid; e:data; e:ts) can not be made to I after op
since all such entries will receive time-stamps larger
than tc, and the checker veri�es that e:ts < tc.

Therefore, we have the following theorem.

Theorem 4.1 For a linked list with at most l elements
there exists an o�-line checker which uses O(log l+ k)
bits of reliable memory and detects errors with proba-
bility at least 1� 1=2k, for any integer k > 1.

The linked list checker described above keeps several
things in its reliable memory: the description of h,
the hashed logs h(I) and h(D), a copy of the head,
and the counters i and tc. If there are multiple linked
lists, each checked by the above scheme, then only the

description of the hash function can be reused, i.e.,
O(k) bits of additional memory would be required for
the logs of each list, so thatO(log l+mk) bits of reliable
memory would be used in total to check m linked lists.
However, the checker can easily be modi�ed so that
O(l) linked lists can be veri�ed simultaneously by a
checker with only O(log l + k) bits of reliable memory
as follows. Each list is assigned a list identi�er (lid);
this lid is added to the tuples entered in the I and D

logs so that a single pair of I and D logs is su�cient
to check all linked lists. Instead of keeping the head
and the counter i of each list in its reliable memory,
the checker stores these values as records in an array
indexed by lid. The array can be checked by a RAM
checker [5], which requires an additional O(k) bits of
reliable memory for the hashed values of its logs.

5



www.manaraa.com

procedure Check split(par; lsib; v)

tc := tc + 1;

add E(lsib; lsib:ts) to D;
add E(v; v:ts) to D;

Process split(leftchild(v));

split(par; lsib; v);
lsib:rsid := v:rsid;

lsib:ts := tc;

add E(lsib; tc) to I;
write(lsib);

return

end Check split

procedure Process split(v)

if (v 6= nil) then

add E(v; v:ts) to D;
process split(rightsib(v));

process split(leftchild(v));

return ;
end Process split

v

Figure 4: Tree edges are indicated by dotted lines, and
the nodes deleted by the split operation are shaded.
Links recorded in D (I) are marked with � ().

4.2 An O�-Line Checker for Trees

The o�-line checker for trees is similar to the linked
list checker. We include a time-stamp �eld in each
tree node, and the checker stores in its reliable mem-
ory the description of the hash function h, the hashed
logs h(I) and h(D), a copy of the root, and coun-
ters i and tc. The I and D logs contain entries of
the form (v:id; v:pid; v:rsid; v:lcid; v:data; ts) which are
represented by (v; ts).

With the exception of the split and splice opera-
tions, the actions taken by the checker on tree oper-
ations are similar to those of the o�-line linked list
checker. Operations split and splice must be handled
di�erently because they deal with subtrees rather than

a single node of the tree, and must process every node
of the relevant subtree. (We note that split and splice

can be rede�ned so that they deal only with individ-
ual nodes, and then they could be checked in the same
manner as the other tree operations.) The checking
version of split (shown in Figure 4) calls the recursive
subroutine Process split, which visits each node in the
subtree that is being deleted from the tree. We avoid
boundary conditions by assuming that the root of the
subtree is an internal node that has a left sibling; the
changes required for the general case are straightfor-
ward. The splice operation is handled similarly.

To check the functioning of the tree at the end of
a sequence of operations, a split(nil; nil; root) is per-
formed; this is analogous to the mock deletion per-
formed when checking linked lists. It is easily seen

that the proof of Lemma 1 (I 6= D if an error occurs)
continues to hold for trees.

Theorem 4.2 For a tree with at most t nodes there
exists an o�-line checker which uses O(log t + k) bits
of reliable memory, and detects errors with probability
at least 1� 1=2k, for any integer k > 1.

The modi�cation to the o�-line linked list checker
that enables it to check O(l) linked lists with the same
resources necessary to check a single linked list applies
to trees as well, i.e., O(t) trees can be veri�ed o�-line
by a checker with O(log t+ k) bits of reliable memory.

4.3 O�-Line Checkers for Graphs

If the graph G = (V;E), jV j = g, is stored in an ad-
jacency matrix, then we use the RAM checker of Blum
et al. [5]. If G is stored in an adjacency list, then we
use the technique discussed in Section 4.1 that checks
O(g) linked lists. Both methods use O(logg + k) bits
of reliable memory, and detect errors with probability
at least 1� 1=2k, for any integer k > 1.

Theorem 4.3 For a graph with at most g ver-
tices, represented by an adjacency matrix or an ad-
jacency list, there exists an o�-line checker which uses
O(logg+ k) bits of reliable memory and detects errors
with probability � 1� 1=2k, for any integer k > 1.

5 On-Line Checkers

Thus far, all our checkers have been o�-line, i.e., the
checker is able to give an answer about the function-
ing of the data structure only after an entire sequence
of operations has been performed. We now describe
checkers that determine after each operation whether
the data structure manager has performed correctly.

5.1 An On-Line Checker for Linked Lists

The o�-line checker for linked lists (Section 4.1)
checks correctness when the linked list is empty. Thus,
a trivial way to verify correctness on-line is to perform
a mock deletion of the entire list after each operation;
recall that in a mock deletion, each element of the list
is read, and the usual entries are made to the D log,
but no entries are made to the I log (of course, it is
also necessary to maintain a copy of the D log before
the mock deletion). However, this strategy might use
O(l) checking operations for each linked list operation
on a list with l elements.

Consider a list L containing l elements. Note that L
can be viewed as the concatenation of r = log l linked
lists L0; L1; : : : ; Lr�1, where each Li (except possibly

6



www.manaraa.com

L43L
2L1L0L

(FLS)
L

(NS)

L4

L4,0 L4,1 L4,2 L4,3

L4,3
(NS)

L4,3,1L4,3,0 L4,3,2

Figure 5: The FLS of the list L, and a portion of the
(recursive) NS of list L4 of the FLS.

Lr�1) contains 2
i elements, and the tail of Li is linked

to the head of Li+1, 80 � i < r � 1; this conceptual
partitioning of L will be called the logarithmic subdi-
vision of L. If logs Ii and Di are maintained for each
list Li, 0 � i < r, a linked list operation op can be
veri�ed on-line by mock deleting only the list Lj that
is involved in op. Although in its present form this
method could still require O(nl) time to check O(n)
linked list operations, it can be re�ned to produce a
more e�cient on-line checker.

The basic idea is to recursively subdivide the lists
Li so that only the �rst access to Li requires O(2i)
operations. Let us call the original logarithmic subdi-
vision of L the �rst level subdivision (FLS), and the
logarithmic subdivision of any sublist of L a nested
subdivision (NS). Let Li, 0 � i < r, denote a list of
the FLS of L, where r = log l (see Figure 5). Let Li;j ,
0 � j < i, denote a list of the NS of list Li (of the
FLS), let Li;j;k, 0 � k < j, denote a list of the NS of
list Li;j, etc. Suppose list Li;j needs to checked. When
performing the mock deletion of Li;j, the checker cre-
ates the logs Ii;j;k and Di;j;k for each list Li;j;k in the
NS of Li;j , 0 � k < j. Although only Li;j is checked by
the present mock deletion, entries will also be made to
the logs for the list Li (the list of the FLS that contains
Li;j) so that Li's logs can be balanced when necessary.

There are two potential problems with the above
proposed on-line linked list checker. The �rst di�-
culty is that a large number of recursive NSs might
be created, and each such subdivision creates I and
D logs for every list in the NS. In fact, it is not di�-
cult to see that there could be as many as O(l) such
logs created so that the checker would need O(lk) re-
liable memory; the technique of simultaneously veri-
fying numerous linked lists mentioned in Section 4.1
is not applicable since the on-line requirement means
that we must be able to verify each list individually in
time proportional to its length. The second di�culty
arises from the fact that no provision is made for up-

dating the FLS as the structure of the list changes, i.e.,
since the FLS remains static there is no guarantee that
there are always 2i elements in list Li. (Note that no
similar problem occurs for the NS since it is dynam-
ically maintained.) To address these concerns we use
the following concept:

De�nition 5.1 An element e is active at time t if at
some time t0 > t the user performs a linked list opera-
tion involving e, and e's predecessor is not accessed in
the intervening interval [t; t0]. The element involved in
the current operation is the current active element.

Note that the head is always active since it has no
predecessor. Since it is not possible for the checker to
determine by itself which elements are active, there
must be some mechanism of informing the checker
which elements are active. For example, the user could
explicitly designate which elements are active, or the
checker might classify as active the last m elements ac-
cessed, and the user would be prohibited fromaccessing
any other element without �rst accessing its predeces-
sor. The following discussion assumes that the checker
knows which elements of the list are active.

Lists with at most one active element. If, at all
times, there is at most one active element e in the list
(in addition to the head, which is always active), then
it is easy to see that only the logs of the lists of the NSs
whose heads lie beyond e (i.e., closer to the tail) need
to be maintained by the checker. Consider an element
e0 that precedes e in the list. Note that e0 cannot be
accessed until all elements preceding e0 in the list have
been active. Thus, the NSs of L that contain e0 will be
formed again before e0 becomes active. Therefore, only
the logs of the lists of the NSs whose heads lie beyond e
need to be maintained by the checker. For example, if
the �rst element of L4;3;1 (Figure 5) is the only active
element, then the checker needs to maintain logs only
for the lists L4;3;1 and L4;3;2. After the checker discards
the logs of the lists of the NSs whose heads precede the
active element e, it is a simple matter to verify that the
number of logs maintained by the checker is O(log l),
rather than O(l).

In order to maintain the structure of the FLS in the
presence of insertions and deletions, it is convenient
to relax the de�nition of a logarithmic subdivision for
the FLS as follows. A relaxed �rst level subdivision
(RFLS) of L consists of the sublists L0; L1; : : : ; Lr0 ,
where jLij < 2i + 2i+1, and is maintained as follows.

If an element is inserted into Li, and the new length
of Li is < 2i + 2i+1 then the checker does not alter
the RFLS. If, however, when an element is inserted
into Li, the new length of Li is � 2i + 2i+1, then the
checker subdivides Li into two lists, L0i and L00i , where
L0i contains the �rst 2

i elements of Li, and L
00

i contains

7



www.manaraa.com

the rest of the elements of Li. The sublist L
0

i becomes
the new list Li, and the sublist L

00

i is prepended to Li+1;
if the new length of Li+1 is � 2i+1+2i+2, then Li+1 is
subdivided analogously and L00i+1 is prepended to Li+2,
and so on as necessary. Although this process may
make a single insertion quite costly, the amortized cost
is easily seen to be O(log l) per insertion; this follows
from the fact that a list Li is subdivided at most once
for every 2i+1 consecutive user operations.

Deletions may cause some Lis to become too small.
In order for there to be O(log l) amortized operations
for each user operation, we need the fact that sublists
of size O(2i) will be accessed (and thus mock deleted)
at most once for every 2i consecutive user operations,
i.e., we need to be sure Li does not have fewer than
2i elements very often. This problem is easily dealt
with by \�lling up" the lists of the RFLS as the ele-
ments traverse the list, i.e., if a list Li contains fewer
than 2i elements, then, as the current active element
traverses Li+1, elements are transferred from Li+1 to
Li. The cost of the redistribution can be charged to
the (already) deleted elements of the list.

Lists with multiple active elements. When there
are multiple active elements in the list, a single RFLS
is shared by all elements, but a NS is maintained for
each active element. The RFLS can be maintained
in exactly the same manner, and with the same cost
in terms of time and space, as for lists with only one
active element. However, since more than one active
element can be contained in the the same list Li of the
RFLS, there may be some interaction between the NSs
for di�erent elements. In order to keep track of the
interactions among the NSs for the active elements,
the checker can maintain a list of the active elements
sorted by position in L. The basic idea is that if there
is more than one active element in some Li 2 RFLS,
then the NSs for these elements are not be allowed to
overlap, i.e., Li is partitioned according the positions
of the active elements that it contains. When an active
element e \passes" another active element e0 in Li, the
NS for e0 becomes the NS for e, and a new NS is
computed for e0 when it becomes active.

It is fairly easy to see that this scheme results in the
same amortized cost of O(log l) operations to check
each user operation. However, it requires more reli-
able memory since, the checker stores h(I) and h(D)
for each of the O(log l) lists in the RFLS, and for the
O(log l) lists of the NSs for each active element.

Theorem 5.1 For a linked list with at most l elements
and m active elements, there exists an on-line checker
that can check n operations in time O(n log l), uses
O(mk log l) bits of reliable memory, and detects errors
with probability at least 1�1=2k, for any integer k > 1.

0

1 2

3 4 5 6

7 8 9 10 11 14

15 16 17 2019 21 22 23 24 25 26 27 2818
T

3

2
T

1T

0T

1,1T

2,0T
2,1T 2,2T

2,3T

1,0T

0,0T

1312

Figure 6: The FLP of the tree T .

5.2 An On-Line Checker for Trees

The structure of the on-line checker for trees is sim-
ilar to that of the on-line checker for linked lists given
in the previous section. Let T be a tree with root r
and t nodes. As with linked lists, this checker uses the
fact that operations on T can be checked on-line by
performing a \mock deletion" after each operation.

We use a scheme called logarithmic partitioning,
similar to the logarithmic subdivision used for linked
lists. The basic idea is as follows. The partitioning of T
is performed according to a breadth-�rst-search (BFS)
of T . Without loss of generality, assume that the nodes
of T are labeled with their BFS number, where nodes
at the same level are visited in left to right order. Note
that we can think of each tree as a binary tree since
in our chosen representation a node is only incident to
its parent, its leftmost child, and its right sibling. The
tree T is partitioned into r = O(

p
log t) sets of trees;

the ith such set is denoted by Ti, 0 � i < r. The set Ti
contains the nodes fvjjNi�1 � j < Ni�1 + nig, where
nk = jTkj, and Nj =

Pj

k=0 nk. Let f(i) = 2i(i+1)=2,
and let n0 = N0 = 1 so that T0 is the root. The nodes
in the set Ti, 0 < i < r, are determined as follows. Ti
is initially assigned nodes numbered Ni�1 + 1 through
Ni�1 + f(i), and if the f(i)th node in Ti is at a dis-
tance of di from the root, then all other nodes of T that
are at a distance di from the root are also assigned to
Ti. Note that ni � 2f(i), 0 � i < r. Each set Ti is
partitioned into subtrees Ti;j so that jTi;jj < 2i+1, 8j.
(See Figure 6.) It is easy to see that in total there
are O(

p
t) subtrees in a logarithmic partition of a tree

T of size t. Corresponding to the RFLS and the NSs
of linked lists, the logarithmic partition of the entire
tree T is called the relaxed �rst level partition (RFLP),
and a logarithmic partition of a subtree of T is called
a nested partition (NP).

The actions of the on-line tree checker are analo-
gous to those of the on-line linked list checker, i.e., the

8



www.manaraa.com

RFLP is shared by all active nodes in the tree (de�ned
analogously to an active element of a linked list), and a
NP is maintained for each active node. Since the par-
titioning is made according to a breadth-�rst-search
traversal of the tree, a subtree of size O(2i) will be ac-
cessed at most once in every i consecutive user opera-
tions, in the worst case, with the exception of split and
splice operations, which can remove or add entire sub-
trees to the tree, respectively. We take the view that a
split or splice is allowed to be considered as O(s) user
operations when adding or deleting a subtree of size s;
this view is not unreasonable when one notes that the
checker has veri�ed the structures of these subtrees,
and must be able to check them in their entirety, on a
node by node basis. With this caveat, the on-line tree

checker performs O(t1=
p
log t=

p
log t) amortized opera-

tions when checking a user operation.
In addition to requiring more amortized time to

check each user operation than the on-line linked list
checker, the on-line tree checker also requires more re-
liable memory. The reason for this is that the RFLP
(and subsequent NPs) of a tree T with t nodes parti-
tions T intoO(

p
t) subtrees. Thus, in total, for each ac-

tive node the on-line tree checker may maintain O(
p
t)

logs to check as many subtrees.

Theorem 5.2 For a tree with at most t nodes and m

active nodes, there exists an on-line checker that can

check n operations in time O(nt1=
p

log t=
p
log t), uses

O(mk
p
t) bits of reliable memory, and detects errors

with probability at least 1�1=2k, for any integer k > 1.

We note that it is possible to construct an on-line
tree checker with a smaller reliable memory if one
is willing to incur a larger amortized cost for each
user operation. For example, if the checker has only
O(mk log t) bits of memory, then each user operation
can be checked in O(t= log t) amortized operations. Fi-
nally, the on-line graph checker discussed next gives an
alternative on-line tree checker which uses less space,
but requires cryptographic assumptions.

5.3 An On-Line Checker for Graphs

Since graph algorithms tend to require random ac-
cess to vertices, it appears that the RAM checkers of
Blum et al. [5] are needed for an on-line graph checker.
The on-line RAM checkers given in [5] di�er from the
checkers thus far described in this paper because they
use cryptographic assumptions. In particular, they use
either pseudorandom functions [9] or universal one-
way hash functions [14, 16]. In both cases, the on-line
RAM checker uses O(logn) bits of reliable memory and
checks n user operations in O(nf log r) time, where r

is the number of cells in the RAM and f is the time
required to evaluate the pseudorandom function or the
universal one-way hash function.

Theorem 5.3 For a graph with at most g vertices,
there exists an on-line checker that can check n op-
erations in time O(nf logg), uses O(logg + k) bits of
reliable memory, and detects errors with probability at
least 1 � 1=2k, for any integer k > 1, where f is the
time necessary to evaluate a pseudorandom function or
a universal one-way hash function.

6 The Certi�cation-Trail Technique

The certi�cation-trail fault-tolerance technique, re-
cently proposed by Sullivan and Masson [17, 18],
bears striking similarities to the data structure check-
ers described in this paper and in [5]. Briey, the
certi�cation-trail technique consists of two phases. In
the �rst phase, a modi�ed version of the original pro-
gram is run, producing both the expected output and
a trail of data called a certi�cation trail. In the sec-
ond phase, another program, called the certi�er, uses
the certi�cation trail created during the �rst phase to
determine whether an error has occurred.

The logs kept by the data structure checker and
the certi�cation trail serve similar purposes in the
two techniques. In fact, any o�-line data structure
checker which adheres to the general paradigm de-
scribed in Section 4 can be converted into a determinis-
tic certi�cation-trail technique (without reliable mem-
ory for the checker). The original program outputs the
raw unhashed log entries as the certi�cation trail. The
certi�er processes these to insure that every entry in
D previously appeared in I. The certi�er �rst stores
the entries of the insert log in an array Ai indexed
by element id; multiple entries with the same id could
be stored, e.g., in linked lists ordered by time-stamp.
Then, in constant time, the certi�er checks that an en-
try (e; ts) of D appeared in I by inspecting Ai[e:id].
(Multiple entries with the same element id would ap-
pear in order of time-stamp in D.) Thus, the certi�er
could process n data structure operations inO(n) time.
Note that this same technique could be performed on-
line, and that each data structure operation would be
processed and checked in constant time. We remark
that, to our knowledge, all proposed certi�cation-trail
methods [17, 18, 8] have been o�-line, i.e., a determi-
nation of correctness can be made only after the entire
certi�cation trail has been output by the modi�ed orig-
inal program and processed by the certi�er. Some of
this latency could be removed by, e.g., checking sub-
sequences of operations [8], but the proposed methods
remain primarily o�-line.

9



www.manaraa.com

Finally, we note that certi�cation-trail methods
cannot necessarily be transformed into checkers: the
checker trusts only its small reliable memory, but the
certi�er implicitly trusts the certi�cation trail created
by the modi�ed original program.

7 Open Problems

It would be interesting to �nd an on-line tree checker
with the same e�ciency as that of the on-line linked
list checker, i.e., one that uses only O(k log t) bits of
reliable memory and can check n user operations in
total time O(n log t), where t is the size of the tree.
Another, seemingly more di�cult, problem is that of
designing an on-line graph checker that does not use
cryptographic assumptions. Note that if the graph
does not have to support random access to any vertex,
but can require that all searches of the graph begin
at a speci�c vertex (or even a few such vertices), then
techniques analogous to those used for trees can be em-
ployed to design checkers with similar time and space
requirements. Thus, the apparent cause of the di�-
culty is the fact that graph algorithms tend to require
random access to any vertex.

References

[1] A. Avizienis. The n-version approach to fault-tolerant

software. IEEE Transactions Software Engineering,

11(12):1491{1501, 1985.

[2] V. Balasubramanian and P. Banerjee. Compiler-
assisted synthesis of algorithm-based checking in mul-

tiprocessors. IEEE Transactions on Computers,

39(4):436{459, April 1990.

[3] P. Banerjee and J. A. Abraham. Bounds on algorithm-
based fault tolerance in multiple processor systems.

IEEE Transactions on Computers, 35(4):296{306,

April 1986.

[4] P. Banerjee, J. T. Rahmeh, C. Stunkel, V. S.

Nair, K. Roy, V. Balasubramanian, and J. A. Abra-

ham. Algorithm-based fault tolerance on a hyper-
cube multiprocessor. IEEE Transactions on Comput-

ers, 39(9):1132{1245, September 1990.

[5] M. Blum, W. Evans, P. Gemmell, S. Kannan, and

M. Naor. Checking the correctness of memories. In

Proceedings of the 32nd Symposium on the Founda-

tions of Computer Science, pages 90{99, 1991.

[6] M. Blum and S. Kannan. Designing programs that
check their work. In Proceedings of the 21st ACM Sym-

posium on Theory of Computing, pages 86{97, 1989.

[7] M. Blum, M. Luby, and R. Rubinfeld. Self-

testing/correcting with applications to numerical
problems. In Proceedings of the 22nd ACM Sympo-

sium on Theory of Computing, pages 73{83, 1990.

[8] Jonathon Bright and Gregory F. Sullivan. Checking

mergeable priority queues. In Digest of the 1994 In-

ternational Symposium on Fault-Tolerant Computing,

June 1994, to appear.

[9] O. Goldreich, S. Goldwasser, and S. Micali. How to

construct random functions. Journal of the ACM,

33(4):792{807, October 1986.

[10] K. Huang and J. A. Abraham. Algorithm-based fault

tolerance for matrix operations. IEEE Transactions

on Computers, 33(6):518{528, June 1984.

[11] B. W. Johnson. Design and Analysis of Fault Tolerant

Digital Systems. Addison Wesley, Reading, MA, 1989.

[12] K. Kant and A. Ravichandran. Synthesizing robust

data structures - an introduction. IEEE Transactions

on Computers, 39(2):161{173, February 1990.

[13] J. Naor and M. Naor. Small-bias probability spaces:

E�cient constructions and applications. SIAM Jour-

nal on Computing, 22(4):838{856, August 1993.

[14] M. Naor and M. Yung. Universal one-way hash func-
tions and their cyptographic applications. In Proceed-

ings of the 21st ACM Symposium on Theory of Com-

puting, pages 33{43, 1989.

[15] B. Randell. System structure for software fault tol-
erance. IEEE Transactions on Software Engineering,

1(2):220{232, 1975.

[16] J. Rompel. One way hash functions are necessary and

su�cient for secure signatures. In Proceedings of the

22nd ACM Symposium on Theory of Computing, pages
387{394, 1990.

[17] G. Sullivan and G. Masson. Using certi�cation trails to
achieve software fault tolerance. In Digest of the 1990

International Symposium on Fault-Tolerant Comput-

ing, pages 423{431, 1990.

[18] G. Sullivan and G. Masson. Certi�cation trails for data

structures. In Proceedings of the 21st International

Symposium on Fault-Tolerant Computing, pages 240{

247, 1991.

[19] D. J. Taylor. Error models for robust storage struc-

tures. In Proceedings of the 20th International Sym-

posium on Fault-Tolerant Computing, pages 416{422,

1990.

10


